Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design.
نویسندگان
چکیده
Trypanothione reductase is a key enzyme in the trypanothione-based redox metabolism of pathogenic trypanosomes. Because this system is absent in humans, being replaced with glutathione and glutathione reductase, it offers a target for selective inhibition. The rational design of potent inhibitors requires accurate structures of enzyme-inhibitor complexes, but this is lacking for trypanothione reductase. We therefore used quinacrine mustard, an alkylating derivative of the competitive inhibitor quinacrine, to probe the active site of this dimeric flavoprotein. Quinacrine mustard irreversibly inactivates Trypanosoma cruzi trypanothione reductase, but not human glutathione reductase, in a time-dependent manner with a stoichiometry of two inhibitors bound per monomer. The rate of inactivation is dependent upon the oxidation state of trypanothione reductase, with the NADPH-reduced form being inactivated significantly faster than the oxidized form. Inactivation is slowed by clomipramine and a melarsen oxide-trypanothione adduct (both are competitive inhibitors) but accelerated by quinacrine. The structure of the trypanothione reductase-quinacrine mustard adduct was determined to 2.7 A, revealing two molecules of inhibitor bound in the trypanothione-binding site. The acridine moieties interact with each other through pi-stacking effects, and one acridine interacts in a similar fashion with a tryptophan residue. These interactions provide a molecular explanation for the differing effects of clomipramine and quinacrine on inactivation by quinacrine mustard. Synergism with quinacrine occurs as a result of these planar acridines being able to stack together in the active site cleft, thereby gaining an increased number of binding interactions, whereas antagonism occurs with nonplanar molecules, such as clomipramine, where stacking is not possible.
منابع مشابه
Design and Docking Study of Some Pyrimidine derivatives as Antimalarial Agents
Background and Aim: According to the latest estimate published by the World Health Organization in 2017, there are 219 million malaria cases and 435,000 deaths. With the emergence of drug-resistant strains in malaria, there is a need for new drug targets every time. In this study, the design and docking study of the pyrimidine derivatives for inhibiting Methionine aminopeptidase1B enzyme (Metap...
متن کاملA Study on the Electronic and Structural Properties of C12X8 (X = C, B) and Their Interaction with Glycine with Potentially Drug Delivery Vessels
In this paper, the structural properties of C20 and C12B8 fullerene interacting with glycine based onthree active sites of glycine and one C atom or one B atom in C12B8 were analyzed through thedensity functional theory. It was found out that the binding of glycine to C12B8 generated a complex.Our results were extremely relevant in order to identify the potential applications of functionalizedC...
متن کاملMolecular modeling, structural analysis and identification of ligand binding sites of trypanothione reductase from Leishmania mexicana.
BACKGROUND & OBJECTIVES Trypanothione reductase (TR) is a member of FAD-dependent NADPH oxidoreductase protein family and it is a key enzyme which connects the NADPH and the thiol-based redox system. Inhibition studies indicate that TR is an essential enzyme for parasite survival. Therefore, it is an attractive target enzyme for novel drug candidates. There is no structural model for TR of Leis...
متن کاملDiaryl sulfide-based inhibitors of trypanothione reductase: inhibition potency, revised binding mode and antiprotozoal activities.
Trypanothione reductase (TR) is an essential enzyme of trypanosomatids and therefore a promising target for the development of new drugs against African sleeping sickness and Chagas' disease. Diaryl sulfides with a central anilino moiety, decorated with a flexible N-alkyl side chain bearing a terminal ammonium ion, are a known class of inhibitors. Using computer modelling, we revised the bindin...
متن کاملA First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 279 28 شماره
صفحات -
تاریخ انتشار 2004